📖
Introduction to programming with Python
  • Introduction to programming with Python 3
  • Preface
    • Common misconceptions about learning to program
    • The Hard truth about learning to program
    • Personal qualities for success
  • 1 - The way of the program
    • Python Programming Language
    • The first program
    • What is debugging?
    • Glossary
    • Exercises
  • 2 - Variables, expressions and statements
    • Values, types and variables
    • Common Built-in data types
    • Expressions
    • Code Format
    • Debugging
    • Glossary
    • Exercises
  • 3 - Functions
    • Python "built-in" Functions
    • Math Functions
    • Composition
    • User Defined Functions
    • PEP 8 Recommendations
    • Debugging
    • Glossary
    • Exercises
  • 4 - Conditionals
    • Boolean expressions
    • Conditional statements
    • PEP 8 Recommendations
  • 5 - Iteration
    • The while statement
    • The for statement
    • break and continue statements
    • Nested Loops
    • PEP 8 Recommendations
    • Debugging
    • Glossary
    • Exercises
  • 6 - A short introduction to testing: Building Reliable Software
  • 7 - A deeper dive into Strings, Lists and Tuples
    • More on Strings
    • More on Lists
    • More on Tuples
    • Debugging
    • Glossary
    • Exercises
  • 8 - A deeper look at Functions in Python
    • Function Preconditions and Postconditions
    • Positional and Keywords arguments
    • Nested Functions
    • Scope of a variable
    • Recursion
    • Functions' side effects
    • Glossary
    • Exercises
  • 9 - Code Documentation
    • Basics of Commenting Code
    • Documenting Code via Python Docstring
  • 10 - Sets and dictionaries
    • Sets
    • Dictionaries
    • Which data structure should I use?
    • Debugging
    • Glossary
    • Exercises
  • 11 - File I/O
    • Read/Write to a file
    • File management
    • Debugging
    • Glossary
    • Exercises
  • 12 - Handling Errors and Exceptions
  • 13 - Writing modules
  • 14 - Classes
    • Classes and Objects
    • Classes and Functions
    • Classes and Methods
    • Pythonic Magic: Understanding and Implementing Dunder Methods
    • Glossary
    • Exercises
  • 15 - Python's Type Hinting
  • Acknowledgements
Powered by GitBook
On this page
  • What is debugging?
  • Syntax errors
  • Runtime errors
  • Semantic errors
  • Experimental debugging
  • Debugging
Edit on GitHub
  1. 1 - The way of the program

What is debugging?

What is debugging?

Programming is error-prone. For whimsical reasons, programming errors are called {\bf bugs} and the process of tracking them down is called {\bf debugging}. \index{debugging} \index{bug} Three kinds of errors can occur in a program: syntax errors, runtime errors, and semantic errors. It is useful to distinguish between them in order to track them down more quickly.

Syntax errors

Python can only execute a program if the syntax is correct; otherwise, the interpreter displays an error message. Syntax refers to the structure of a program and the rules about that structure. For example, parentheses have to come in matching pairs, so (1 + 2) is legal, but 1 + 2) is a syntax error.

In plain English, readers can tolerate most syntax errors, however Python is not so forgiving. If there is a single syntax error anywhere in your program, Python will display an error message and quit, and you will not be able to run your program. During the first few weeks of your programming career, you will probably spend a lot of time tracking down syntax errors. As you gain experience, you will make fewer errors and find them faster.

Runtime errors

The second type of error is a runtime error, so called because the error does not appear until after the program has started running. These errors are also called exceptions because they usually indicate that something exceptional (and bad) has happened. Runtime errors are rare in the simple programs you will see in the first few chapters, so it might be a while before you encounter one.

Semantic errors

The third type of error is the semantic error. If there is a semantic error in your program, it will run successfully in the sense that the computer will not generate any error messages, but it will not do the right thing. It will do something else. Specifically, it will do what you told it to do. The problem is that the program you wrote is not the program you wanted to write. The meaning of the program (its semantics) is wrong. Identifying semantic errors can be tricky because it requires you to work backward by looking at the output of the program and trying to figure out what it is doing.

Experimental debugging

One of the most important skills you will acquire is debugging. Although it can be frustrating, debugging is one of the most intellectually rich, challenging, and interesting parts of programming. In some ways, debugging is like detective work. You are confronted with clues, and you have to infer the processes and events that led to the results you see. Debugging is also like an experimental science. Once you have an idea about what is going wrong, you modify your program and try again. If your hypothesis was correct, then you can predict the result of the modification, and you take a step closer to a working program. If your hypothesis was wrong, you have to come up with a new one. As pointed out, "When you have eliminated the impossible, whatever remains, however improbable, must be the truth.'"

For some people, programming and debugging are the same thing. That is, programming is the process of gradually debugging a program until it does what you want. The idea is that you should start with a program that does something and make small modifications, debugging them as you go, so that you always have a working program.

Later chapters will make more suggestions about debugging and other programming practices.

Debugging

It is a good idea to read this book in front of a computer so you can try out the examples as you go. You can run most of the examples in interactive mode, but if you put the code into a script, it is easier to try out variations. Whenever you are experimenting with a new feature, you should try to make mistakes. For example, in the "Hello, world!" program, what happens if you leave out one of the quotation marks? What if you leave out both? What if you spell print wrong?

Programming, and especially debugging, sometimes brings out strong emotions. If you are struggling with a difficult bug, you might feel angry, despondent or embarrassed. There is evidence that people naturally respond to computers as if they were people (See Reeves and Nass, The Media Equation: How People Treat Computers, Television, and New Media Like Real People and Places).

When they work well, we think of them as teammates, and when they are obstinate or rude, we respond to them the same way we respond to rude, obstinate people. Preparing for these reactions might help you deal with them. One approach is to think of the computer as an employee with certain strengths, like speed and precision, and particular weaknesses, like lack of empathy and inability to grasp the big picture. Your job is to be a good manager: find ways to take advantage of the strengths and mitigate the weaknesses. And find ways to use your emotions to engage with the problem, without letting your reactions interfere with your ability to work effectively.

Learning to debug can be frustrating, but it is a valuable skill that is useful for many activities beyond programming. At the end of each chapter there is a debugging section, like this one, with my thoughts about debugging. I hope they help!

PreviousThe first programNextGlossary

Last updated 1 year ago

This kind of experiment helps you remember what you read; it also helps with debugging, because you get to know what the error messages mean. It is better to make mistakes now and on purpose than later and accidentally.

ℹ️